"""
Python for Machine Learning - Session # 83
Topic to be covered -
How fit(), transform() and fit_transform() works ?
OR
Difference between fit(), transform() and fit_transform()
"""
import pandas as pd
from sklearn.preprocessing import Imputer, LabelEncoder
df = pd.read_csv('Datapreprocessing.csv')
imputer = Imputer(missing_values='NaN',strategy='mean',axis=0)
imputer.fit(df[['Age','Salary']])
X = imputer.transform(df[['Age','Salary']])
imputer.fit_transform(df[['Age','Salary']])
###############################################################################
encode = LabelEncoder()
encode.fit(df['Country'])
encode.transform(df['Country'])
encode.fit_transform(df['Country'])
###############################################################################
import numpy as np
from sklearn.preprocessing import StandardScaler
x1 = np.array([[1,2,3],
[4,5,6],
[7,8,9]])
standscaler = StandardScaler()
x_scaler = standscaler.fit_transform(x1)
print(x_scaler)
''' (Xi - Xmean) / (standard Deviation of that feature) '''
standscaler.fit(x1)
standscaler.transform(x1)