'''
Topic to be Covered - Label Encoding using Functions
'''
import pandas as pd
import numpy as np
train = pd.read_csv('train.csv')
train['Age'].fillna(train['Age'].mean,inplace=True)
train.drop(['Cabin'],axis=1,inplace=True)
train['Embarked'].fillna(train['Embarked'].mode()[0],inplace=True)
print(train.info())
print(train.head())
features = train.iloc[:].values
df = pd.DataFrame(features)
#------------------------------- L A B E L E N C O D I I N ------------------#
# Sex, Embarked,
from sklearn.preprocessing import LabelEncoder
encode = LabelEncoder()
features[:,4] = encode.fit_transform(features[:,4])
features[:,10] = encode.fit_transform(features[:,10])
#features[:,10] = encode.fit_transform(features[:,10])
#features[:,10] = encode.fit_transform(features[:,10])
#features[:,10] = encode.fit_transform(features[:,10])
#features[:,10] = encode.fit_transform(features[:,10])
df = pd.DataFrame(features)
#########################################################
from sklearn.preprocessing import LabelEncoder
encode = LabelEncoder()
features1 = train.iloc[:].values
#label_index = [4,10]
label_index=[3,4,8,9,10]
df2= pd.DataFrame(features1)
def label_encode(list1,features1):
for i in range(len(label_index)):
for j in range(features1.shape[1] + 1):
if j == label_index[i]:
features1[:,j] = encode.fit_transform(features1[:,j])
label_encode(label_index,features1)
df3= pd.DataFrame(features1)