Thursday, 11 September, 2025г.
russian english deutsch french spanish portuguese czech greek georgian chinese japanese korean indonesian turkish thai uzbek

пример: покупка автомобиля в Запорожье

 

Нахождение точки максимума функции

Нахождение точки максимума функцииУ вашего броузера проблема в совместимости с HTML5
Лучшие репетиторы по алгебре в одной базе http://www.virtualacademy.ru/repetitory/po-algebre/ В данном уроке показывается решение задачи на определение точки максимума заданной функции. Для успешного решения задачи необходимо знать: своего экстремума (минимума или максимума) функция достигает в критических точках, то есть в точках, в которых производная равна нулю или не существует. Сначала, применяя правило дифференцирования, определяется производная функции, которая затем приравнивается к нулю. Разделив обе части полученного уравнения на коэффициент при x, далее оно решается по теореме, обратной теореме Виета. Затем найденные критические точки отмечаются на числовой оси. На каждом из полученных промежутков монотонности определяется знак производной и по этому знаку определяется поведение функции. Если в критической точке функция имеет минимум, то производная меняет знак с минуса на плюс, если максимум - с плюса на минус. Построив для наглядности схематично график функции, определяется точка максимума, что и является ответом. Приведенное решение можно использовать для результативной подготовки к ЕГЭ по математике, в частности, при решении задач типа B15.
Мой аккаунт